cusomer center e - EMAIL to COPY

Request for Quotation

Q&A

Power Sonicator
Carbon Cloth
Carbon Paper
Carbon Felt
´Ù°ø¼º ±Ý¼Ó
Carbon Powder, Liquid
¹æ¿­ Sheet
°í¼Ó¹Ú¸·ºÐ»êÀåºñ
Æú¸®¿Ã·¹ÇÉ
Activated Carbon
Á¤¹Ð È®À强 ±Ý¼Ó
¹èÅ͸® Å×½ºÅͱâ
Laminate Film
ÆÐÅϿµµ Á¶Àý±â
Power Sonicator
WIZ_DBS1500
     Carbon Powder, Liquid
 
Carbon Powder, Liquid
 
Product Descriptions  
 

Carbon Nano Fiber(Carbon powder, Carbon Liquid)

¡¤ MDCNF£¨CNF powder£©¡¡

¡¤ MDCNF-D£¨CNF Liquid£©

 

 

 

 Key features

of the product

 Very small add-on to increase challenge

 and reinforcement

 Improved thermal conductivity

 High purity

 


MDCNF(CNF powder)=Shape/Diameter(nm)/Length(um)/Resistance value/specific surface area 

MDCNF-D(CNF Liquid)=Product name/CNF Water/CNF EtOH/CNF NMP//Distributed solvent=giving commandments/Ethanol commandments/N-methyl Pyrolidon

 ¢º Conductivity

Come out Conductivity by mixing resin and ceramic etc.

Carbon nanofiber is so small that it is expected to serve a variety of conductive applications, such as Li ion batteries, transparent challenging film, fuel cells, etc., and the use of electricity as an electromagnetic absorption material.

 ¢º Reinforcement ¡¤ Thermal conductivity

Make material of strong and light with a combination of materials.

When you put carbon nanofiber in resin, the properties of resin have almost no degradation. It is also expected to increase the heat emission characteristics by mixing carbon nanofiber with materials that cannot deliver heat such as resin and ceramic.

 

 

 ¢º Example of an application of Carbon Nano Fiber

  Come out conductivity by adding small amount (1 wt%~).


 

 

 

 

¡Û Gramax-S Introduction

Gramax vs Gramax S

Typical physical Properties






[
Initial Charge and Discharge Profile]

 


 


 


 

 

 

 

 

 




¡Û Gramax ¥á – HP type anode materials

 

Characteristics        

- Materials derived from coke
- A kind of soft carbon

 

 

* Used as an positive active material on the LIB
- C/D propels compatible with hard carbon
- In a third-party assessment, most characteristics appear to be better than hard carbon.
-
A reasonable price range

 

 

 

[Compare to Gramax(Standard)]

 

 Gramax

 Gramax ¥á

 Heat Treat Temperature

 Lower than artificial graphite

 Lower than Gramax

 True density

 Almost same as Graphite

(¢¦£².£²g/cm3)

 A bit smaller than Graphite

(1.9-2.2g/cm3  ¡ØDepend on Grade)

 1st D/C effecienty 

 Almost same as Graphite

(94-95%)

 Lower than Gramax

(75-90%  ¡ØDepend on Grade)

 C-D profile

 Flat like graphite

 Slope like hard carbon (HC)

 

 

 

[Gramax ¥á Concept ]

▪ Improved charging characteristics (rapid charging possible)

Lower cost than HC

Materials particularly suitable for HEVs

 

 

 

 

[Charging and Isolation Profile]


 

 

 Charging (mAh∙g)

 DisCharging (mAh∙g)

 1st C/D Efficiency (%)

 Gramax 90

 259

 244

 94.2

 Gramax ¥á1

 372

 284

 76.3

 Gramax ¥á2

 305

 253

 83.0

 Gramax ¥á3

 265

 222

 83.8

 

 

 

[Evaluation ability (Charging)]

 

Gramax ¥á can be charged even at higher speeds.

 

 

 

 

 

 

[Evaluation ability (Discharging)]


Gramax ¥á still represents good discharge characteristics.




[PC Rsistance]

C-D Profile of Gramax ¥á2



 

 Charging (mAh∙g)

 DisCharging (mAh∙g)

 1st C/D Efficiency (%)

 EC/2EMC

 305

253

83.0 

 PC/EC/EMC

 300

250 

83.3 

 

Gramax ¥á shows excellent resistance to PC solvents.

 

 

 

 

 

 

 

 

 

¢º Full Cell Data with Gramax ¥á

 

[Cell Configuration 1]

Electrode Configuration

Positive Electrode

          LNCM : Conductivity : Binder = 92 : 4 : 4

 

Negative Electrode

          Gramax ¥á: Active Material : Binder = 95.0: 5.0

 

          HC£º Active Material : Conductivity : Binder = 94.5 : 0.5 : 5.0

 

 

* Cell balance

- Gramax ¥á

 Electrode

 Active Material

 Load

 Discharge

Capacity

 Electrode Density

 Cell

Thickness

 Positive

 LNCM

 7.8¡¾0.1mg/cm2

 145mAh/g

 2.9¡¾0.1g/cm3

 -

 Negative

 Gramax ¥á

 5.0¡¾0.1mg/cm2

 240mAh/g

 1.3¡¾0.1g/cm3

 1.99

 

- HC

 Electrode

 Active Material

 Load

 Discharge

Capacity

 Electrode Density

 Cell

Thickness

 Positive

 LNCM

 7.5¡¾0.1mg/cm2

 145mAh/g

 3.0¡¾0.1g/cm3

 -

 Negative

 Hard Carbon

 3.0¡¾0.1mg/cm2

 400mAh/g

 1.1¡¾0.1g/cm3

 1.99

 

 

 

 

[Cell Configuration 2]

 

* Other Cell Specifications

Positive : Carbon Black + Graphite

Binder Positive: PVdF

Neurotransmitter : Carbon Black

Neurotransmission binder : PV£äF

Current collector : +: Al (t=15um), -: Cu(t=10um)

Separator : polyolefin-type (25um)

Electrolytic matter : 1mol/l, LiPF6 EC:EMC(3:7)

Cell form : Al Laminated Cell

Electrode area :   +£º18.0cm2, -: 19.8cm2

Cell size£º 90mm ¡¿ 55mm

 

 

* Evaluation item

¡¤ Initial characteristics

¡¤ Flow capability

¡¤ Charging speed performance

¡¤ Low temperature characteristics (discharge)
¡¤ DC-R in various SOCs(discharge
)

¡¤ Plot charging characteristics

¡¤ 1C1CC3D cycle

 

 

 

 

 

 

 

[Charge/Discharge Profile (Initial, Current Status)]

This comparison is not suitable for HC because the cell design is two different.



 

 

 

[Charge/Discharge Profile (Initial, post-compensation)]

Even after the cell thickness has been calibrated, the cell capacity of Gramax a is slightly greater than the HC.



 

 

 

 

[Discharge Proportion capability]

Gramax¥á appears to be superior to HC up to 7CA emissions.


In 10CA discharge, thicker electrodes and/or conductive materials for 

 

Gramax¥á may not have been affected.

 


 

 

 

 

 

[DC-IR at various SOC (Discharge)]

In contrast to high-speed discharge, Gramax¥á represents DC-j lower than HC, despite its disadvantages to electrode thickness.





 

 

 

 

 

[Cycle characteristics]

- Capacity retention after 200 cycles (1C/1C) is 95% for Gramax.

92% for HC.

A further cycle test has been initiated.

(3C/3C to 400 Cycles and 5C/5C to 600 Cycles).

 

 


 

 

 

 

[High temperature storage]

After 20 days, capacity retention rates are 85%; 89% for Gramax ¥á; 78% for HC; and 82%.



 

 

 

 

[Summary (temporary)]

¡¤ Even after the cell thickness correction, Gramax ¥á appears to be better or at least has compatible properties compared to HC.

¡¤ Gramax-0E, a capacity holding capacity of 10CA and/or -20¡ÆC, may be improved when using conductive additives or adopting other cell designs.

¡¤ Gramax ¥á may be substituted for HC.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¡Û OMAC-R

 

[Concept]

• Nature graphite surface treatment

• Nearly the same physical and electrical chemistry as the previous OMAC

• Religible price range

 

* Process of OMAC and OMAC-R


 

 

 

 Raw Materials

 Mixing

 Carbonization

 Classification

 Shipping

 OMAC

 China

 Japan

 OMAC-R

 China


 

 

 

 

 

[Physical Properties of OMAC-R] 

 

 Particle size distribution (um)

 SSA

(m2/g)

 Tap Density

(g/cm3)

D10

D50

D90

Dmax 

 OMAC-R

7.4

11.7

19.4

44.0

 3.58

 0.98

 OMAC12¡Ø

 -

 12.5¡¾1.0

 -

 44

 3.5¡¾0.3

 >1.0

 

 

¡Ø Preliminary specification for OMAC12

 

 

[PSD profile of OMAC12 and OMAC-R ]


 

 

 

 

[Characteristics of C3D in OMACR-R Initial]

 

 Charging

(mAh/g)

 Discharging

(mAh/g)

 1st C/D Efficiency

 OMAC-R

 382.5

 357.3

 93.4%

 OMAC12¡Ø

 Irreversible cap. 30

 350

 £¾92%

¡Ø General value of OMAC12

 

 

 

 

 

 

[1st C/D profile of OMAC-R]






 

 

 

 

[Charging characteristics of OMAC-R (Half Cell)]


 

 Charging amount to 0V at C.C (mAh/g)

 0.3C

 1.0C

 3.0C

 5.0C

 10.0C

 OMAC-R

 333.1

 116.5

 27.4

 15.7

 9.1

 OMAC12

 339.6

 139.8

 34.1

 16.5

 8.9



 

 

 

 

[Discharging characteristics of OMAC-R(Half Cell)]


 

 Discharging amount to 1.2V at C.C./ (mAh/g)

 0.3C

 1.0C

 3.0C

 5.0C

 10.0C

 OMAC-R

 359.9

 358.5

 348.0

 287.9

 106.8

 OMAC12

357.7

357.7

348.5

 288.5

 95.1



 

 

 

 

SEM image of OMAC-R


 

 

 

 

 

 

 

 

 

¡Û n-CF

 



[Concept]

• Physical size between V/G/P/P and O/CCF (diameter: less than 4mm)

• Utilize high-quality peer pitch, rotational and stabilization techniques.

 

 

SEM Image (Before milling process)


 

 

 

[Physical property compared with other conductive materials]

 

 SSA

(m2/g)

 Electroconductivity

(S/cm)

 Compressed density

(g/cm3)

 VGCF

 11.28

 11.99

 0.87

 Denka Black

 70.07

 6.67

 0.60

 £îCF-1

 1.62

 4.29

 0.94

 £îCF-2

 1.56

 6.44

 1.02

 £îCF-3

 0.75

 22.36

 1.21

 

 

 

[First effective C/D]

 

 1st Charging amount

(mAh/g)

 1st Discharging amount

(mAh/g)

 1st C/D Efficiency

(mAh/g)

 MCMB

£«VGCF

 341

 329

 96.3

 MCMB

£« Denka Black

 349

 328

 94.2

 MCMB

£« nCF-1

 350

 332

 94.7

 MCMB

£« nCF-2

 342

 330

 96.6

 MCMB

£« nCF-3

 343

 330

 96.3

 

 

 

[Rapid separation]

 

 

 0.3C

 1C

 3C

 MCMB

£«VGCF

 329

£¨100%)

 

 323

£¨98%£©

 300

£¨91%£©

 MCMB

£« Denka Black

 328

£¨100%)

 324

£¨99%£©

 300

£¨92%£©

 MCMB

£« nCF-1

 332

£¨100%)

 325

£¨98%£©

 286

£¨86%£©

 MCMB

£« nCF-2

 330

£¨100%)

 324

£¨98%£©

 304

£¨92%£©

 MCMB

£« nCF-3

 330

£¨100%)

 326

£¨98%£©

 303

£¨92%£©

 


 

 

 

 
Top